Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 12856, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553382

RESUMO

X-chromosome inactivation (XCI) analyses often assist in diagnostics of X-linked traits, however accurate assessment remains challenging with current methods. We developed a novel strategy using amplification-free Cas9 enrichment and Oxford nanopore technologies sequencing called XCI-ONT, to investigate and rigorously quantify XCI in human androgen receptor gene (AR) and human X-linked retinitis pigmentosa 2 gene (RP2). XCI-ONT measures methylation over 116 CpGs in AR and 58 CpGs in RP2, and separate parental X-chromosomes without PCR bias. We show the usefulness of the XCI-ONT strategy over the PCR-based golden standard XCI technique that only investigates one or two CpGs per gene. The results highlight the limitations of using the golden standard technique when the XCI pattern is partially skewed and the advantages of XCI-ONT to rigorously quantify XCI. This study provides a universal XCI-method on DNA, which is highly valuable in clinical and research framework of X-linked traits.


Assuntos
Sequenciamento por Nanoporos , Humanos , DNA , Genes Ligados ao Cromossomo X , Inativação do Cromossomo X/genética , Cromossomos Humanos X/genética
2.
Eur J Hum Genet ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277488

RESUMO

RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.

3.
Am J Med Genet A ; 188(6): 1676-1687, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166435

RESUMO

The Nexilin F-Actin Binding Protein (Nexilin) encoded by NEXN is a cardiac Z-disc protein important for cardiac function and development in humans, zebrafish, and mice. Heterozygote variants in the human NEXN gene have been reported to cause dilated and hypertrophic cardiomyopathy. Homozygous variants in NEXN cause a lethal form of human fetal cardiomyopathy, only described in two patients before. In a Swedish, four-generation, non-consanguineous family comprising 42 individuals, one female had three consecutive pregnancies with intrauterine fetal deaths caused by a lethal form of dilated cardiomyopathy. Whole-exome sequencing and variant analysis revealed that the affected fetuses were homozygous for a NEXN variant (NM_144573:c.1302del;p.(Ile435Serfs*3)). Moreover, autopsy and histology staining declared that they presented with cardiomegaly and endocardial fibroelastosis. Immunohistochemistry staining for Nexilin in the affected fetuses revealed reduced antibody staining and loss of striation in the heart, supporting loss of Nexilin function. Clinical examination of seven heterozygote carriers confirmed dilated cardiomyopathy (two individuals), other cardiac findings (three individuals), or no cardiac deviations (two individuals), indicating incomplete penetrance or age-dependent expression of dilated cardiomyopathy. RNA sequencing spanning the variant in cDNA blood of heterozygote individuals revealed nonsense-mediated mRNA decay of the mutated transcripts. In the current study, we present the first natural course of the recessively inherited lethal form of human fetal cardiomyopathy caused by loss of Nexilin function. The affected family had uneventful pregnancies until week 23-24, followed by fetal death at week 24-30, characterized by cardiomegaly and endocardial fibroelastosis.


Assuntos
Cardiomegalia , Fibroelastose Endocárdica , Proteínas dos Microfilamentos , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Fibroelastose Endocárdica/genética , Fibroelastose Endocárdica/metabolismo , Fibroelastose Endocárdica/patologia , Feminino , Humanos , Imuno-Histoquímica , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Sequenciamento do Exoma
4.
Genome Biol ; 21(1): 290, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261648

RESUMO

BACKGROUND: One ongoing concern about CRISPR-Cas9 genome editing is that unspecific guide RNA (gRNA) binding may induce off-target mutations. However, accurate prediction of CRISPR-Cas9 off-target activity is challenging. Here, we present SMRT-OTS and Nano-OTS, two novel, amplification-free, long-read sequencing protocols for detection of gRNA-driven digestion of genomic DNA by Cas9 in vitro. RESULTS: The methods are assessed using the human cell line HEK293, re-sequenced at 18x coverage using highly accurate HiFi SMRT reads. SMRT-OTS and Nano-OTS are first applied to three different gRNAs targeting HEK293 genomic DNA, resulting in a set of 55 high-confidence gRNA cleavage sites identified by both methods. Twenty-five of these sites are not reported by off-target prediction software, either because they contain four or more single nucleotide mismatches or insertion/deletion mismatches, as compared with the human reference. Additional experiments reveal that 85% of Cas9 cleavage sites are also found by other in vitro-based methods and that on- and off-target sites are detectable in gene bodies where short-reads fail to uniquely align. Even though SMRT-OTS and Nano-OTS identify several sites with previously validated off-target editing activity in cells, our own CRISPR-Cas9 editing experiments in human fibroblasts do not give rise to detectable off-target mutations at the in vitro-predicted sites. However, indel and structural variation events are enriched at the on-target sites. CONCLUSIONS: Amplification-free long-read sequencing reveals Cas9 cleavage sites in vitro that would have been difficult to predict using computational tools, including in dark genomic regions inaccessible by short-read sequencing.


Assuntos
Sequência de Bases , Sistemas CRISPR-Cas , Biologia Computacional/métodos , Edição de Genes/métodos , DNA , Variação Genética , Genômica , Células HEK293 , Humanos , Mutação , Sequenciamento por Nanoporos , RNA Guia de Cinetoplastídeos , Análise de Sequência de DNA , Software
5.
Sci Rep ; 9(1): 10730, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31341187

RESUMO

The TATA-box binding protein associated factor 1 (TAF1) protein is a key unit of the transcription factor II D complex that serves a vital function during transcription initiation. Variants of TAF1 have been associated with neurodevelopmental disorders, but TAF1's molecular functions remain elusive. In this study, we present a five-generation family affected with X-linked intellectual disability that co-segregated with a TAF1 c.3568C>T, p.(Arg1190Cys) variant. All affected males presented with intellectual disability and dysmorphic features, while heterozygous females were asymptomatic and had completely skewed X-chromosome inactivation. We investigated the role of TAF1 and its association to neurodevelopment by creating the first complete knockout model of the TAF1 orthologue in zebrafish. A crucial function of human TAF1 during embryogenesis can be inferred from the model, demonstrating that intact taf1 is essential for embryonic development. Transcriptome analysis of taf1 zebrafish knockout revealed enrichment for genes associated with neurodevelopmental processes. In conclusion, we propose that functional TAF1 is essential for embryonic development and specifically neurodevelopmental processes.


Assuntos
Histona Acetiltransferases/fisiologia , Deficiência Intelectual/genética , Sistema Nervoso/crescimento & desenvolvimento , Fatores Associados à Proteína de Ligação a TATA/fisiologia , Fator de Transcrição TFIID/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/crescimento & desenvolvimento , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Histona Acetiltransferases/genética , Humanos , Masculino , Retardo Mental Ligado ao Cromossomo X/genética , Sistema Nervoso/embriologia , Linhagem , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Eur J Hum Genet ; 27(3): 432-441, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30459414

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disorder with heterogeneous clinical presentation and complex etiology involving the interplay between genetic, epigenetic, environmental and hormonal factors. Many common SNPs identified by genome wide-association studies (GWAS) explain only a small part of the disease heritability suggesting the contribution from rare genetic variants, undetectable in GWAS, and complex epistatic interactions. Using targeted re-sequencing of coding and conserved regulatory regions within and around 215 candidate genes selected on the basis of their known role in autoimmunity and genes associated with canine immune-mediated diseases, we identified a rare regulatory variant rs200395694:G > T located in intron 4 of the MEF2D gene encoding the myocyte-specific enhancer factor 2D transcription factor and associated with SLE in Swedish cohorts (504 SLE patients and 839 healthy controls, p = 0.014, CI = 1.1-10). Fisher's exact test revealed an association between the genetic variant and a triad of disease manifestations including Raynaud, anti-U1-ribonucleoprotein (anti-RNP), and anti-Smith (anti-Sm) antibodies (p = 0.00037) among the patients. The DNA-binding activity of the allele was further studied by EMSA, reporter assays, and minigenes. The region has properties of an active cell-specific enhancer, differentially affected by the alleles of rs200395694:G > T. In addition, the risk allele exerts an inhibitory effect on the splicing of the alternative tissue-specific isoform, and thus may modify the target gene set regulated by this isoform. These findings emphasize the potential of dissecting traits of complex diseases and correlating them with rare risk alleles with strong biological effects.


Assuntos
Lúpus Eritematoso Sistêmico/genética , Fenótipo , Splicing de RNA , Adolescente , Adulto , Idoso , Criança , Feminino , Células HEK293 , Humanos , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Ligação Proteica
7.
Eur J Med Genet ; 62(6): 103526, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30125677

RESUMO

Cornelia de Lange syndrome (CdLS) is a heterogeneous developmental disorder where 70% of clinically diagnosed patients harbor a variant in one of five CdLS associated cohesin proteins. Around 500 variants have been identified to cause CdLS, however only eight different alterations have been identified in the RAD21 gene, encoding the RAD21 cohesin complex component protein that constitute the link between SMC1A and SMC3 within the cohesin ring. We report a 15-month-old boy presenting with developmental delay, distinct CdLS-like facial features, gastrointestinal reflux in early infancy, testis retention, prominent digit pads and diaphragmatic hernia. Exome sequencing revealed a novel RAD21 variant, c.1774_1776del, p.(Gln592del), suggestive of CdLS type 4. Segregation analysis of the two healthy parents confirmed the variant as de novo and bioinformatic analysis predicted the variant as disease-causing. Assessment by in silico structural model predicted that the p.Gln592del variant results in a discontinued contact between RAD21-Lys591 and the SMC1A residues Glu1191 and Glu1192, causing changes in the RAD21-SMC1A interface. In conclusion, we report a patient that expands the clinical description of CdLS type 4 and presents with a novel RAD21 p.(Glu592del) variant that causes a disturbed RAD21-SMC1A interface according to in silco structural modeling.


Assuntos
Síndrome de Cornélia de Lange/genética , Mutação de Sentido Incorreto , Proteínas Nucleares/genética , Fenótipo , Fosfoproteínas/genética , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA , Síndrome de Cornélia de Lange/patologia , Humanos , Lactente , Masculino , Proteínas Nucleares/química , Fosfoproteínas/química , Domínios Proteicos
8.
Am J Med Genet A ; 176(6): 1405-1410, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29663639

RESUMO

Arthrogryposis multiplex congenita (AMC) is a heterogeneous disorder characterized by multiple joint contractures often in association with other congenital abnormalities. Pretibial linear vertical creases are a rare finding associated with arthrogryposis, and the etiology of the specific condition is unknown. We aimed to genetically and clinically characterize a boy from a consanguineous family, presenting with AMC and pretibial vertical linear creases on the shins. Whole exome sequencing and variant analysis revealed homozygous novel missense variants of ECEL1 (c.1163T > C, p.Leu388Pro, NM_004826) and MUSK (c.2572C > T, p.Arg858Cys, NM_005592). Both variants are predicted to have deleterious effects on the protein function, with amino acid positions highly conserved among species. The variants segregated in the family, with healthy mother, father, and sister being heterozygous carriers and the index patient being homozygous for both mutations. We report on a unique patient with a novel ECEL1 homozygous mutation, expanding the phenotypic spectrum of Distal AMC Type 5D to include vertical linear skin creases. The homozygous mutation in MUSK is of unknown clinical significance. MUSK mutations have previously shown to cause congenital myasthenic syndrome, a neuromuscular disorder with defects in the neuromuscular junction.


Assuntos
Artrogripose/genética , Metaloendopeptidases/genética , Mutação de Sentido Incorreto , Artrogripose/etiologia , Consanguinidade , Feminino , Luxação do Quadril/diagnóstico por imagem , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Pele/patologia , Sequenciamento do Exoma
9.
Hereditas ; 154: 16, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270100

RESUMO

BACKGROUND: Genealogy and molecular genetic studies of a Swedish river valley population resulted in a large pedigree, showing that the hereditary hemochromatosis (HH) HFE/p.C282Y mutation is inherited with other recessive disorders such as Wilson´s disease (WND), a rare recessive disorder of copper overload. The population also contain individuals with the Swedish long QT syndrome (LQTS1) founder mutation (KCNQ1/p.Y111C) which in homozygotes causes the Jervell & Lange Nielsen syndrome (JLNS) and hearing loss (HL).Aims of the study were to test whether the Swedish long QT founder mutation originated in an ancestral HFE family and if carriers had an increased risk for hemochromatosis (HH), a treatable disorder. We also aimed to identify the pathogenic mutation causing the hearing loss disorder segregating in the pedigree. METHODS: LQTS patients were asked about their ancestry and possible origin in a HH family. They were also offered a predictive testing for the HFE genotype. Church books were screened for families with hearing loss. One HH family had two members with hearing loss, who underwent molecular genetic analysis of the LQTS founder mutation, connexin 26 and thereafter exome sequencing. Another family with hearing loss in repeat generations was also analyzed for connexin 26 and underwent exome sequencing. RESULTS: Of nine LQTS patients studied, four carried a HFE mutation (two p.C282Y, two p.H63D), none was homozygous. Three LQTS patients confirmed origin in a female founder ( b 1694, identical to AJ b 1694, a HFE pedigree member from the Fax river. Her descent of 44 HH families, included also 29 families with hearing loss (HL) suggesting JLNS. Eleven LQTS probands confirmed origin in a second founder couple (b 1614/1605) in which the woman b 1605 was identical to a HFE pedigree member from the Fjällsjö river. In her descent there were not only 64 HH, six WND families, one JLNS, but also 48 hearing loss families. Most hearing loss was non syndromic and caused by founder effects of the late 16th century. One was of Swedish origin carrying the WHRN, c.1977delC, (p.S660Afs*30) mutation, the other was a TMC1(NM_138691),c.1814T>C,(p.L605P) mutation, possibly of Finnish origin. CONCLUSIONS: Deep human HFE genealogies show HFE to be associated with other genetic disorders like Wilson´s disease, LQTS, JLNS, and autosomal recessive hearing loss. Two new homozygous HL mutations in WHRN/p.S660Afs*30 and TMC1/p.L605P were identified,none of them previously reported from Scandinavia. The rarity of JLNS was possibly caused by miscarriage or intrauterine death. Most hearing loss (81.7%) was seen after 1844 when first cousin marriages were permitted. However, only 10 (10.3%) came from 1st cousin unions and only 2 (2.0 %) was born out of wedlock.


Assuntos
Efeito Fundador , Perda Auditiva Neurossensorial/genética , Hemocromatose/genética , Degeneração Hepatolenticular/genética , Síndrome de Jervell-Lange Nielsen/genética , Proteínas de Membrana/genética , Análise Mutacional de DNA , Feminino , Heterozigoto , Humanos , Masculino , Mutação , Linhagem , Suécia
10.
Prenat Diagn ; 37(11): 1146-1154, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28921562

RESUMO

OBJECTIVE: De novo mutations contribute significantly to severe early-onset genetic disorders. Even if the mutation is apparently de novo, there is a recurrence risk due to parental germ line mosaicism, depending on in which gonadal generation the mutation occurred. METHODS: We demonstrate the power of using SMRT sequencing and ddPCR to determine parental origin and allele frequencies of de novo mutations in germ cells in two families whom had undergone assisted reproduction. RESULTS: In the first family, a TCOF1 variant c.3156C>T was identified in the proband with Treacher Collins syndrome. The variant affects splicing and was determined to be of paternal origin. It was present in <1% of the paternal germ cells, suggesting a very low recurrence risk. In the second family, the couple had undergone several unsuccessful pregnancies where a de novo mutation PTPN11 c.923A>C causing Noonan syndrome was identified. The variant was present in 40% of the paternal germ cells suggesting a high recurrence risk. CONCLUSIONS: Our findings highlight a successful strategy to identify the parental origin of mutations and to investigate the recurrence risk in couples that have undergone assisted reproduction with an unknown donor or in couples with gonadal mosaicism that will undergo preimplantation genetic diagnosis.


Assuntos
Análise Mutacional de DNA/métodos , Disostose Mandibulofacial/diagnóstico , Síndrome de Noonan/diagnóstico , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Feminino , Humanos , Masculino , Mosaicismo , Gravidez , Diagnóstico Pré-Implantação , Medição de Risco
11.
Hum Mol Genet ; 26(6): 1070-1077, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28158657

RESUMO

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G > A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome.


Assuntos
Conexina 26/genética , Mutação em Linhagem Germinativa/genética , Ceratite/genética , Mosaicismo , Adulto , Conexina 26/biossíntese , Junções Comunicantes/genética , Junções Comunicantes/patologia , Regulação da Expressão Gênica , Genótipo , Células HeLa , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ceratite/patologia , Masculino , Mutação de Sentido Incorreto , Pele/metabolismo , Pele/patologia
12.
BMC Med Genet ; 16: 95, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26467218

RESUMO

BACKGROUND: Noonan syndrome (NS), a heterogeneous developmental disorder associated with variable clinical expression including short stature, congenital heart defect, unusual pectus deformity and typical facial features, is caused by activating mutations in genes involved in the RAS-MAPK signaling pathway. CASE PRESENTATION: Here, we present a clinical and molecular characterization of a small family with Noonan syndrome. Comprehensive mutation analysis of NF1, PTPN11, SOS1, CBL, BRAF, RAF1, SHOC2, MAP2K2, MAP2K1, SPRED1, NRAS, HRAS and KRAS was performed using targeted next-generation sequencing. The result revealed a recurrent mutation in NRAS, c.179G > A (p.G60E), in the index patient. This mutation was inherited from the index patient's father, who also showed signs of NS. CONCLUSIONS: We describe clinical features in this family and review the literature for genotype-phenotype correlations for NS patients with mutations in NRAS. Neither of affected individuals in this family presented with juvenile myelomonocytic leukemia (JMML), which together with previously published results suggest that the risk for NS individuals with a germline NRAS mutation developing JMML is not different from the proportion seen in other NS cases. Interestingly, 50% of NS individuals with an NRAS mutation (including our family) present with lentigines and/or Café-au-lait spots. This demonstrates a predisposition to hyperpigmented lesions in NRAS-positive NS individuals. In addition, the affected father in our family presented with a hearing deficit since birth, which together with lentigines are two characteristics of NS with multiple lentigines (previously LEOPARD syndrome), supporting the difficulties in diagnosing individuals with RASopathies correctly. The clinical and genetic heterogeneity observed in RASopathies is a challenge for genetic testing. However, next-generation sequencing technology, which allows screening of a large number of genes simultaneously, will facilitate an early and accurate diagnosis of patients with RASopathies.


Assuntos
Análise Mutacional de DNA/métodos , GTP Fosfo-Hidrolases/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Membrana/genética , Mutação , Síndrome de Noonan/genética , Síndrome de Noonan/patologia , Adulto , Manchas Café com Leite/epidemiologia , Manchas Café com Leite/genética , Feminino , Genes ras , Humanos , Lentigo , Leucemia Mielomonocítica Juvenil/epidemiologia , Masculino , Pessoa de Meia-Idade , Linhagem
13.
PLoS Genet ; 11(6): e1005248, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26057447

RESUMO

The complexity of clinical manifestations commonly observed in autoimmune disorders poses a major challenge to genetic studies of such diseases. Systemic lupus erythematosus (SLE) affects humans as well as other mammals, and is characterized by the presence of antinuclear antibodies (ANA) in patients' sera and multiple disparate clinical features. Here we present evidence that particular sub-phenotypes of canine SLE-related disease, based on homogenous (ANA(H)) and speckled ANA (ANA(S)) staining pattern, and also steroid-responsive meningitis-arteritis (SRMA) are associated with different but overlapping sets of genes. In addition to association to certain MHC alleles and haplotypes, we identified 11 genes (WFDC3, HOMER2, VRK1, PTPN3, WHAMM, BANK1, AP3B2, DAPP1, LAMTOR3, DDIT4L and PPP3CA) located on five chromosomes that contain multiple risk haplotypes correlated with gene expression and disease sub-phenotypes in an intricate manner. Intriguingly, the association of BANK1 with both human and canine SLE appears to lead to similar changes in gene expression levels in both species. Our results suggest that molecular definition may help unravel the mechanisms of different clinical features common between and specific to various autoimmune disease phenotypes in dogs and humans.


Assuntos
Genoma , Lúpus Eritematoso Sistêmico/genética , Fenótipo , Animais , Estudos de Casos e Controles , Cães , Loci Gênicos , Haplótipos , Lúpus Eritematoso Sistêmico/veterinária
14.
J Med Genet ; 52(3): 195-202, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25612909

RESUMO

BACKGROUND: Fetal akinesia deformation sequence syndrome (FADS, OMIM 208150) is characterised by decreased fetal movement (fetal akinesia) as well as intrauterine growth restriction, arthrogryposis, and developmental anomalies (eg, cystic hygroma, pulmonary hypoplasia, cleft palate, and cryptorchidism). Mutations in components of the acetylcholine receptor (AChR) pathway have previously been associated with FADS. METHODS AND RESULTS: We report on a family with recurrent fetal loss, where the parents had five affected fetuses/children with FADS and one healthy child. The fetuses displayed no fetal movements from the gestational age of 17 weeks, extended knee joints, flexed hips and elbows, and clenched hands. Whole exome sequencing of one affected fetus and the parents was performed. A novel homozygous frameshift mutation was identified in muscle, skeletal receptor tyrosine kinase (MuSK), c.40dupA, which segregated with FADS in the family. Haplotype analysis revealed a conserved haplotype block suggesting a founder mutation. MuSK (muscle-specific tyrosine kinase receptor), a component of the AChR pathway, is a main regulator of neuromuscular junction formation and maintenance. Missense mutations in MuSK have previously been reported to cause congenital myasthenic syndrome (CMS) associated with AChR deficiency. CONCLUSIONS: To our knowledge, this is the first report showing that a mutation in MuSK is associated with FADS. The results support previous findings that CMS and/or FADS are caused by complete or severe functional disruption of components located in the AChR pathway. We propose that whereas milder mutations of MuSK will cause a CMS phenotype, a complete loss is lethal and will cause FADS.


Assuntos
Anormalidades Múltiplas/genética , Artrogripose/genética , Junção Neuromuscular/genética , Receptores Proteína Tirosina Quinases/genética , Receptores Colinérgicos/genética , Anormalidades Múltiplas/fisiopatologia , Artrogripose/fisiopatologia , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/fisiopatologia , Feto/fisiopatologia , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , Masculino , Mutação , Junção Neuromuscular/crescimento & desenvolvimento , Junção Neuromuscular/fisiopatologia , Linhagem , Transdução de Sinais
15.
PLoS One ; 8(9): e75639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086599

RESUMO

Equine Multiple Congenital Ocular Anomalies (MCOA) syndrome is a heritable eye disorder mainly affecting silver colored horses. Clinically, the disease manifests in two distinct classes depending on the horse genotype. Horses homozygous for the mutant allele present with a wide range of ocular defects, such as iris stromal hypoplasia, abnormal pectinate ligaments, megaloglobus, iridociliary cysts and cataracts. The phenotype of heterozygous horses is less severe and predominantly includes iridociliary cysts, which occasionally extend into the temporal retina. In order to determine the genetic cause of MCOA syndrome we sequenced the entire previously characterized 208 kilobase region on chromosome 6 in ten individuals; five MCOA affected horses from three different breeds, one horse with the intermediate Cyst phenotype and four unaffected controls from two different breeds. This was performed using Illumina TruSeq technology with paired-end reads. Through the systematic exclusion of all polymorphisms barring two SNPs in PMEL, a missense mutation previously reported to be associated with the silver coat colour and a non-conserved intronic SNP, we establish that this gene is responsible for MCOA syndrome. Our finding, together with recent advances that show aberrant protein function due to the coding mutation, suggests that the missense mutation is causative and has pleiotrophic effect, causing both the horse silver coat color and MCOA syndrome.


Assuntos
Anormalidades do Olho/genética , Doenças dos Cavalos/genética , Cavalos/genética , Mutação de Sentido Incorreto/genética , Prata/metabolismo , Alelos , Animais , Cromossomos/genética , Anormalidades do Olho/metabolismo , Estudos de Associação Genética/métodos , Genótipo , Heterozigoto , Homozigoto , Doenças dos Cavalos/metabolismo , Cavalos/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA
16.
PLoS One ; 5(8): e12332, 2010 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-20808798

RESUMO

Symmetrical lupoid onychodystrophy (SLO) is an immune-mediated disease in dogs affecting the claws with a suggested autoimmune aethiology. Sequence-based genotyping of the polymorphic exon 2 from DLA-DRB1, -DQA1, and -DQB1 class II loci were performed in a total of 98 SLO Gordon setter cases and 98 healthy controls. A risk haplotype (DRB1*01801/DQA1*00101/DQB1*00802) was present in 53% of cases and 34% of controls and conferred an elevated risk of developing SLO with an odds ratio (OR) of 2.1. When dogs homozygous for the risk haplotype were compared to all dogs not carrying the haplotype the OR was 5.4. However, a stronger protective haplotype (DRB1*02001/DQA1*00401/DQB1*01303, OR = 0.03, 1/OR = 33) was present in 16.8% of controls, but only in a single case (0.5%). The effect of the protective haplotype was clearly stronger than the risk haplotype, since 11.2% of the controls were heterozygous for the risk and protective haplotypes, whereas this combination was absent from cases. When the dogs with the protective haplotype were excluded, an OR of 2.5 was obtained when dogs homozygous for the risk haplotype were compared to those heterozygous for the risk haplotype, suggesting a co-dominant effect of the risk haplotype. In smaller sample sizes of the bearded collie and giant schnauzer breeds we found the same or similar haplotypes, sharing the same DQA1 allele, over-represented among the cases suggesting that the risk is associated primarily with DLA-DQ. We obtained conclusive results that DLA class II is significantly associated with risk of developing SLO in Gordon setters, thus supporting that SLO is an immune-mediated disease. Further studies of SLO in dogs may provide important insight into immune privilege of the nail apparatus and also knowledge about a number of inflammatory disorders of the nail apparatus like lichen planus, psoriasis, alopecia areata and onycholysis.


Assuntos
Alelos , Doenças do Cão/genética , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Doenças do Sistema Imunitário/veterinária , Animais , Cães , Haplótipos , Doenças do Sistema Imunitário/genética , Desequilíbrio de Ligação
17.
Nat Genet ; 42(3): 250-4, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20101241

RESUMO

The unique canine breed structure makes dogs an excellent model for studying genetic diseases. Within a dog breed, linkage disequilibrium is extensive, enabling genome-wide association (GWA) with only around 15,000 SNPs and fewer individuals than in human studies. Incidences of specific diseases are elevated in different breeds, indicating that a few genetic risk factors might have accumulated through drift or selective breeding. In this study, a GWA study with 81 affected dogs (cases) and 57 controls from the Nova Scotia duck tolling retriever breed identified five loci associated with a canine systemic lupus erythematosus (SLE)-related disease complex that includes both antinuclear antibody (ANA)-positive immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). Fine mapping with twice as many dogs validated these loci. Our results indicate that the homogeneity of strong genetic risk factors within dog breeds allows multigenic disorders to be mapped with fewer than 100 cases and 100 controls, making dogs an excellent model in which to identify pathways involved in human complex diseases.


Assuntos
Doenças do Cão/genética , Loci Gênicos , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/genética , Animais , Anticorpos Antinucleares/genética , Arterite/complicações , Arterite/genética , Estudos de Casos e Controles , Mapeamento Cromossômico , Doenças do Colágeno/complicações , Doenças do Colágeno/genética , Cães , Estudo de Associação Genômica Ampla , Humanos , Meningite/complicações , Meningite/genética , Modelos Biológicos , Doenças Reumáticas/complicações , Doenças Reumáticas/genética
18.
Immunogenetics ; 61(8): 557-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19636550

RESUMO

Nova Scotia duck tolling retrievers are predisposed to a SLE-related disease complex including immune-mediated rheumatic disease (IMRD) and steroid-responsive meningitis-arteritis (SRMA). IMRD involves symptoms that resemble those seen in systemic autoimmune rheumatic diseases, such as systemic lupus erythematosus, SLE, or SLE-related diseases, in humans. This disease complex involves persistent lameness, stiffness, mainly after resting, and palpable pain from several joints of extremities. The majority of affected dogs display antinuclear autoantibody (ANA)-reactivity. SRMA is manifested in young dogs with high fever and neck stiffness and can be treated with corticosteroids. We have investigated the possible role of MHC class II as a genetic risk factor in IMRD and SRMA etiology. We performed sequence-based typing of the DLA-DRB1, -DQA1, and -DQB1 class II loci in a total of 176 dogs including 51 IMRD (33 ANA-positive), 49 SRMA cases, and 78 healthy controls (two dogs were both IMRD- and SRMA-affected). Homozygosity for the risk haplotype DRB1*00601/DQA1*005011/DQB1*02001 increased the risk for IMRD (OR = 4.9; ANA-positive IMRD: OR = 7.2) compared with all other genotypes. There was a general heterozygote advantage, homozygotes had OR = 4.4 (ANA-positive IMRD: OR = 8.9) compared with all heterozygotes. The risk haplotype contains the five amino acid epitope RARAA, known as the shared epitope for rheumatoid arthritis. No association was observed for SRMA. We conclude that DLA class II is a highly significant genetic risk factor for ANA-positive IMRD. The results indicate narrow diversity of DLA II haplotypes and identify an IMRD-related risk haplotype, which becomes highly significant in homozygous dogs.


Assuntos
Doenças Autoimunes/veterinária , Doenças do Cão/genética , Doenças do Cão/imunologia , Genes MHC da Classe II , Lúpus Eritematoso Sistêmico/veterinária , Doenças Reumáticas/veterinária , Alelos , Sequência de Aminoácidos , Animais , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Estudos de Casos e Controles , Cães , Epitopos/genética , Predisposição Genética para Doença , Haplótipos , Heterozigoto , Homozigoto , Humanos , Fenômenos Imunogenéticos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Polimorfismo Genético , Doenças Reumáticas/genética , Doenças Reumáticas/imunologia , Fatores de Risco , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...